a The current issue and full text archive of this journal is available at
rZ 3 http://www.emerald-library.com/ft

HFF
11,8

744

Received July 2000
Revised July 2001
Accepted July 2001

International Journal of Numerical
Methods for Heat & Fluid Flow,
Vol. 11 No. 8, 2001, pp. 744-760.

@© MCB University Press, 0961-5539

Application of genetic
algorithms to the development
of a variable Schmidt number

model for jet-in-crossflows
Yanhu Guo, Guangbin He and Andrew T. Hsu

Department of Mechanical Engineering,
Indiana University-Purdue University, Indianapolis, USA

Keywords Numerical methods, Optimization, Genetic algorithms, Turbulence, Model

Abstract Proposes the use of genetic algorithms to assist the development of turbulence models. A
variable Schmidt number model for scalar mixing in jet-in-crossflows was developed through
theoretical analyses. A uniform micro genetic algorithm is implemented to optimize the model. This
is the first known application of the genetic algorithm (GA) technique to turbulence model
development. Overall, the GA technique worked exceptionally well for this problem in a cost-effective
and time-efficient manner. A set of experimental data on a single round jet issued into a confined
crossflow is selected for calibvation and optimization of the model constants using the uniform
micro-genetic optimization algovithm. Three sets of experimental data of jet-in-crossflows are used
for the validation of the new model. Numerical results show that the proposed scheme of using the
genetic algorithms to develop turbulence models produces very promising results.

Introduction

Genetic algorithms (GA) have been used extensively in design optimizations. In
the present article, we propose the use of GA to assist the development of
turbulence models. As is well known, there is no one existing turbulence model
that can be used to simulate all turbulent flow problems. Engineering design
often have to rely on special models that are tailored for the specific
applications. In the present work, we describe a procedure by which we
developed a turbulence mixing model for jet-in-crossflows with the help of GA.

Jet-in-crossflows is used extensively in gas turbine combustors to enhance
combustion efficiency and reduce combustor exit temperature. The accurate
prediction of scalar mixing in a jet-in-crossflow is critical to the design process,
especially so for low emission combustor design. The current practice in the
aircraft engine industry for the numerical simulations of turbulent combustion
relies on the k-¢ model with the turbulent diffusion of scalars modeled through
the use of a constant Schmidt number. Conventionally a Schmidt number
around 0.7 is being used. However, our previous study (He et al., 1999) shows
that this assumption is inadequate for combustor simulations, and a major
revision on the concept of constant Schmidt number is needed.

The concept of a variable Schmidt number has been previously addressed in
various contexts by other researchers (Reynolds, 1975). However, the earlier
works were based mostly on mixing length models, and much attention was given
to the near wall behavior of the turbulent Schmidt number. Work on complex



flows, such as jet-in-crossflow, based on more up-to-date turbulence models is
lacking. Recent experimental studies (Smith and Mungal, 1998) show that, in
addition to the counter-rotating vortex pair, the wake structure and the large scale,
intermittent structures in jet-in-crossflows all play important roles in the mixing
process. Compared to the conventional constant Schmidt number model, a
variable Schmidt number model that includes more flow physics is believed to
have the capability to model the above-mentioned phenomena more adequately.

Based on theoretical analyses, a variable Schmidt number model that includes
the effects of mean strain and turbulence properties has been developed in the
present work. There are three model constants that need to be determined for this
model. To search this large multimodal parameter space efficiently, a robust GA
technique (Goldberg, 1989; Carroll, 1996) was implemented to find the set of
unknown parameters which best matched predictions of scalar transport with
experimental data. Experimental data of a single round jet issued into a confined
crossflow by Kamotani and Greber (1972, 1974) is selected for model calibration
and optimization. Three sets of experimental data of jet-in-crossflows by
Kamotani and Greber (different momentum ratio), Crabb et al. (1981) and Sherif
and Pletcher (1989a, b) are used for model validation.

Variable Schmidt number model
Reynolds-averaged scalar transport equation can be written as:
oY oY o Y 0, ——
—+U—=D— Y u;
ot UGy D%z Tay W M

in which, U; and Y are mean velocity components and scalar concentration,
respectively. D is the molecular diffusion of the scalar. The scalar flux (—Y;u;),
which needs to be modeled, is a second order correlation of fluctuating scalar
concentration and fluctuating velocity.

To model the scalar flux properly, we begin with its transport equation.
Assuming large Reynolds number and neglecting the effect of buoyancy, the
scalar-flux transportation equation can be written as:

EY Ml—i-(]]a Y Ml——a—xj{ys uz”]"i__pysél]} (2)
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in which, terms on left hand represent the time change rate and convection of
the scalar flux. The first term on right hand represents the flux transport
caused by fluctuating velocity and fluctuating pressure. The second term on
right hand represents the increase of transport flux caused by rate of mean
shear strain and mean scalar concentration gradient. The third term is a
correlation term of fluctuating pressure and fluctuating scalar concentration,
and it causes a redistribution of flux components in three directions. The fourth
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term represents the flux dispersion caused by the molecular motion. The first,
third, and fourth terms on the right-hand side need to be modeled.

For large Reynolds number, steady, homogeneous turbulent flows, the
unsteady term can be neglected and Equation (2) can be simplified as:

8U+u oY laYS’
]8 Hax] p’ Ox;

Yiu (3)

The pressure-scalar concentration gradient correlation term, 1 AT i , can be split

into two terms, return-to-isotropy term IT° and rapld pressure- scalar concentratlon
gradient term Hr Following common practice in standard k- modeling (Launder
and Spalding, 1974), these two terms can be modeled as (Chen, 1991):

Cz Y/ U; ({;U Cg Y’ (2(]] (5)

Thus equation (3) can be rewritten as:
oY

ASZJYS/ U = —Ml'uja—xj (6)
in which,
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Assuming isotropic turbulence, equation (6) can be simplified as:

- 2k 0Ys

In order to avoid matrix inverse, let tensor S;; be its determinant times a unit
tensor. Thus equation (6) can be simplified as:

: 4 B 1 0Y,
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in which,
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Schmidt number can be expressed as, Sc = g’, in which v; and D; denote
turbulence eddy viscosity coefficient and turbulence diffusion coefficient,
respectively. From standard k- model, v, can be written as:



v = Cﬂkz/e (11)
where C,, = 0.09.
From equation (9), we get:
4 1
1

Thus a variable Schmidt number model can be formulated as:

Sc:¥cu

Sl

(13)

Three new constants, A, B and C are introduced and need to be determined.
From equation (10), we can see that this model includes effects of the mean
shear, effects of turbulent kinetic energy % and its dissipation € on scalar
transport in a jet-in-crossflow. Constants A and C are proportional to the
magnitude of Schmidt number. Constant C also reflects the relative importance
of turbulence frequency scale €/k to the mean shear. Constant B reflects the
effects of asymmetry, when B equals 1, both S;; and S;; are symmetric tensors.

Application of genetic algorithms for model optimization
Preliminary calculations with the above variable Schmidt number model (using
given sets of parameters, A, B and C, that were believed to be reasonable
guesses) showed that the parameter space was multimodal, i.e. there are a very
large number of local minimums in this parameter space. The question now
becomes, how do we efficiently search this multimodal parameter space for a
combination of these three parameters which provide the optimum overall
agreement with experimental data?

The current literature identified (Goldberg, 1989) three main types of search
methods: calculus-based, enumerative, and random. Calculus-based methods
have been studied extensively, and have many successful applications.
However the methods are local in scope, and depend upon the restrictive
requirements of continuity and derivative existence. Enumerative schemes
have been considered in many shapes and sizes. The idea is fairly
straightforward; with a finite search space, or a discretized infinite search
space, the search algorithm starts looking at objective function values at every
point in the space, one at a time. Although the simplicity of this type of
algorithm is attractive, and enumeration is a very human kind of search (when
the number of possibilities is small), such schemes lack efficiency. Since the
variable Schmidt number model is nonlinear and the large parameter space is
multimodal, calculus-based and enumerative techniques were discounted for
either robustness or efficiency. A GA technique, which is a search procedure
that uses random choice as a tool to guide a highly exploitative search through
a coding of a parameter space (Goldberg, 1989), is chosen to deal with this
optimization problem.
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A uniform micro-GA procedure, recommended by Carroll (1996) for its
simplicity, robustness and efficiency, was implemented in the current CFD code
(He et al, 1999). A brief description of the GA technique will be presented,
followed by a more detailed description of the technique applied to the current
parameter optimization problem.

GAs are based on biological natural selection, evolutionary processes, and
natural genetics. An initial population of size #n is created from a random
selection of the parameters in the parameter space. Each parameter set
represents the individual’s chromosomes. Each of the individuals is assigned a
fitness based on how well it performs in its environment. Generally, there are
three GA operators to create new generation:

(1) selection;
(2) crossover; and
(3) mutation.

Fit individuals are selected for mating, while weak individuals die off. Mated
parents create a child with a chromosome set that is some mix of the parents’
chromosomes. Then there is a small probability that one or more of the child’s
chromosomes will be mutated. The process of mating and child creation is
continued until an entire new population of size 7 is generated, with the hope that
strong parents will create a fitter generation of children. In practice, the average
fitness of the population tends to increase with each new generation. Population
convergence is defined to occur when the chromosome of all the individuals differ
from that of the best fit individual in only a small fraction of the chromosome bits.
When population convergence occurs while the best individual does not have the
highest fitness of all possibilities, it is called a premature convergence. To avoid
premature convergence, a micro-GA (Carroll, 1996) is adopted. A new random
population is chosen while keeping the best fit individual from the previously
converged generation and the evolution restarts. Successive generations are
created until, to the extent allowed by practical constraints, a very fit individual is
obtained. To assist the understanding of this GA procedure, a pseudo-code for the
model parameter optimization problem is shown in Figure 1.

Tournament selection, no mutation, elitism and uniform crossover with
micro-GA were used in the application. For completeness, a brief outline of each
is given below:

Tournament selection. Random pairs are selected from the population
and the fitter of each pair is allowed to mate. The process of selecting
random pairs and mating the stronger individuals continues until a new
generation of size n is repopulated.

« Mutation. This is the occasional (with small probability) random
alteration of a gene. It may reintroduce useful genetic material, which is
lost through selection and crossover, to the chromosomes.

- Elitism. After a population is generated, the GA checks to see if the best
parent has been replicated; if not, then a random individual is chosen and



Read control parameters for the GA procedure;
generation:=1;
Initial population with random binary strings;
while generation < max_generation do
Evaluate the fitness of all individuals;
Find the best individual;
for i=1 to population_size step 2 do
Perform tournament selection;
Perform uniform crossover;
endfor
Copy the offspring into new population;
Reproduce the best parent into a random slot;
Check the convergence of the new population;
if premature then
Reproduce the best individual,
Regenerate other individuals randomly;
endif
generation:=generation+1;
endwhile

the chromosome of best parent is reproduced into that individual. This
operator can help prevent the random loss of the best chromosome string.

« Uniform crossover. Every bit of two selected parent chromosomes will be
determined randomly if they need to be exchanged between these two
chromosomes. In uniform crossover, it is possible to obtain any combination of
two parents’ chromosomes. A crossover probability was chosen to be Pc = 0.5.

For the representation of the individuals (chromosomes), binary strings are
chosen. A specified parameter interval [U,,,;, U,ue. 18 mapped into an #-bits
binary string linearly (see Figure 2), in which U denotes parameters A, B or C.
In this way, we can carefully control the range and precision of the unknown
parameter. The error of this mapped coding can be calculated as:

Umax - Umin

T (4

where 7 denotes the number of bits used to represent the parameter.
In the current application, the length of each chromosome is 30 bits, with
ten bits dedicated to each of the model parameters A, B, and C

0000 —pUmin

111 1—3pUmax
others map linearly in between
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Figure 1.

Pseudo-code of the
genetic algorithm for the
model parameters
optimization problem

Figure 2.
Mapping of a single U
parameter for n = 4
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Figure 3.

Chromosome
representation of the
genetic algorithm for the
model calibration problem

(see Figure 3). That means there are 1,024(2'°) possibilities for each parameter,
and 1,024° possibilities for the parameter combinations. Based on preliminary
calculations, the ranges of three model parameters are judiciously chosen as
follows: A from 0.0 to 10.0, B from —-5.0 to 5.0 and C from 0.0 to 5.0. From
equation (14), we can see that the errors of this mapped coding will be 0.01, 0.01
and 0.005 for parameters A, B and C, respectively.

The selection of the fitness function is also important. It may significantly
affect the history of convergence. In the current problem, the target is
maximizing the agreement of our numerical prediction with experimental data.
We assume the velocity field and pressure field, which in the present study is
not significantly affected by the Schmidt number, have been simulated
correctly, and error mainly comes from the new Schmidt number model. So
only the agreement of the scalar concentration distribution is considered.

We have tested two fitness functions, which are defined as:

1/2

fitness, =1 — {%Z (Yo — Yse)z} (15)
oy 1/2

s =1 {155 (5= 22)')

where Y, denotes the mean scalar concentration, subscripts ¢ and ¢ denote
numerical calculation and experimental measurement, respectively, # is the
number of numerical data adopted for comparison with experimental data, o is
a small positive constant, in this application ¢ = 0.001. Note that in both
formulas, smaller total difference of scalar concentration represents better
fitness. When the accuracy in the large scalar concentration region is of
primary concern, equation (15), which reflects an absolute error, is more
appropriate as a fitness function, while equation (16), which reflects a relative
one, is more appropriate when the accuracy in the low scalar concentration
region is more important.

For mixing in the jet-in-crossflow, it is relatively difficult to obtain a good
numerical prediction in the region of low scalar concentration, where it is most
important for combustion simulation. The fitness function given in equation
(16), which has advantage of exaggerating the importance of prediction of low
scalar concentration, is adopted in the present study for the calibration and
optimization of the model parameters.

Parameter Parameter Parameter
A B C

l€—10 bits—P}€¢—10 bits—>¢—10 bits—>]
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The numerical simulation is performed using the Reynolds-averaged Navier-
Stokes equations coupled with a standard k-¢ model (Sherif and Pletcher,

1989b) and the present variable Schmidt number model. A SIMPLE algorithm
(Chen, 1991), with a second order hybrid finite volume scheme, was adopted. In

Numerical calibration and opt

order to stabilize the solution, under-relaxation factors were used for primitive

variables.
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Experimental data of a single heated round jet issued into a confined

crossflow, by Kamotani and Greber (Kamotani and Greber

1972, 1974), was

)

selected for the model parameter calibration. The temperature difference

12D for momentum

32, where D denotes the jet diameter. The velocity of the air crossflow

with the jet temperature at 465K.

)

The distance from the jet exit to the opposite wall is H

between the jet and the crossflow is 167K
ratio J

1S 8my/s.

Based on symmetry about the jet center plane, the computational domain
was established on half of the flowfield. In this computational domain, a grid of

directions, respectively. This selection is the result of a grid dependency study

(He et al., 1999), where grid sizes of 70 x 45 x 30, 80 x 45 x 40, and 90 x 50 x
40 have been tested. The grid structure and coordinate system used in the

90 x 45 x 40 was generated in the streamwise, vertical and spanwise
present study are shown in Figure 4.

The main computational parameters in the GA are as follows:

T
T

n =5, frac = 0.05, max_generation = 150, m = 20

I

Figure 4.

Computational grid and

coordinate system
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Figure 5.
Convergence of the
genetic algorithm
through generations

where 7 denotes size of population, frac is the criteria used to detect population
convergence, 7 denotes total number of positions at which the computation result
is compared with experimental data, and max_generation denotes how many
generations the population will evolve. Two bigger sizes of the population, # = 10
and » = 20, have been tested for the optimization problem. They gave almost the
same results, so the parameter of # = 5 for this problem is recommended and the
corresponding results are presented here. That means five fully converged
simulation of mass transport in one generation. Total 150 generations were used. So
total 750 fully converged simulation of mass transport are used in the calibration.

A steady flowfield was obtained first by using a constant Schmidt number
of 0.8, which is commonly adopted in jet-in-crossflows computation. Because
for the cases studied here the temperature difference between the jet and the
crossflow is small and temperature variation has very little effect on the
velocity field, only the enthalpy equation was solved during the optimization
process, with other flow variables unchanged.

Figure 5 shows the convergence history of the genetic algorithm through
generations, where the history of average individual fitness is shown every
five generations. It shows that the best individual fitness keeps increasing
through generations. The history of average individual fitness shows that
there are several restarts of the micro-GA. It demonstrates that the micro-GA
indeed prevents premature convergence. Figure 6 shows the history of three
model parameters through generations. It can be seen that there are big jumps
of these parameters through generations. Through 150 generations, the three
model parameters are optimized as:
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Note: Solid line = best individual fitness; dashed line = average individual fitness
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A =0.616,B = —2.713 and C = 3.910.

Figure 7 shows a qualitative comparison of temperature contours between the
experimental data and numerical predictions, with optimized model parameters
and with a constant Schmidt number of 0.8. These results show that predicted
temperature profiles with proposed variable Schmidt number model agrees much
better with experimental data than that with a constant Schmidt number of 0.8.
Quantitatively, the fitness value using the optimized variable Schmidt number
model is 0.62, while that using a constant Schmidt number of 0.8 is only 0.294.

Figure 8 shows the distribution of predicted Schmidt number at center-plane
with optimized model parameters. It shows that the predicted Schmidt number
1s far from uniform and the magnitude of the Schmidt number is much lower
than 0.8. This demonstrates that the variable Schmidt number model is
necessary for calculating the mixing process in jet-in-crossflow.

It should be noted that the model parameters were optimized to maximize
the agreement of the predicted temperature profile with experimental profile.
More work is needed to validate the calibrated parameters, and we proceed
with the validation using three different sets of experimental data.

Validation

In the previous section, we have selected the model constants based on one set
of experimental data through the application of Gas. In order to confirm that
the model so determined is generally applicable to a class of jet-in-crossflow
problems, we apply the model to the prediction of other jet-in-crossflows for
which experimental data exist. Three sets of experimental data are selected for
this validation.
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Figure 6.

Evolution of magnitudes
of three model
parameters through
generations
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(1) Kamotani and Greber (1972, 1974). First, we have used the other two
momentum ratio, ] = 8 and ] = 72 of Kamotani and Greber’s, as a
validation of the new proposed variable Schmidt number model. The
geometry and simulation are the same as | = 32’s except the
momentum ratio. The comparison of the temperature distribution at
the central symmetric surface between experimental data and the
numerical simulation with both constant Schmidt number 0.8 and the
variable Schmidt number model was made. The results are shown in
Figures 9 and 10 and show that the new proposed model gave a better
prediction of the temperature distribution than constant Sc 0.8.
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Crabb et al. (1981). To verify the observation further, we use another set
of experimental data obtained by Crabb ef al. (1981) and again use the
variable Schmidt number model and the Sc = 0.8 to calculate the scalar
field in a jet-in-crossflow. In this case, Crabb et al. (1981) used Helium
trace to identify the species concentration distribution in this isothermal
flow. Figure 11 presents the comparison between measured and
calculated species concentrations using the variable Schmidt number
model and the constant Schmidt number of 0.8 at four downstream
locations of X/D = 4, 6, 8 and 10. It again can be seen that the predicted
species concentration profiles using the proposed variable Schmidt
number model better match the measured data.

Sherif and Pletcher (1989a, b). The experimental data of a single heated
round jet issued into a confined crossflow by Sherif and Pletcher (1989a, b)
was selected for the third validation. The distance from the jet exit to the
opposite wall is H = 18D for velocity ratio R = 4. The velocity of the water
crossflow is 0.4m/s.

The variable Schmidt number model is applied to this case using the
same 90 x 45 x 40 grid. In Figure 12, we have plotted vertical profiles of
velocity magnitude on the center-plane at four streamwise locations. The
data of Sherif and Pletcher (1989a) for the same locations are plotted as
symbols on the same figures. Overall, the qualitative agreement between
simulated and experimental results is very good. The simulation
reproduces the two local maxima observed in the experiment in each
downstream profile, and correctly predicts the evolution of the velocity
profile. Quantitatively the comparison is also satisfactory. The prediction
agrees with experimental measurements in the location of the maximum
magnitude for each vertical profile, although the maximum velocity is
slightly under-predicted. The discrepancies between numerical predictions
and experimental data are believed to be caused by the deficiencies of the
standard k- model.

In Figure 13 we present vertical mean scalar profiles on the
center-plane at four streamwise locations. The data of Sherif and Pletcher
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Figure 8.

Contours of predicted
Schmidt number in the
symmetric plane
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(1989D) for the same locations are plotted as symbols on the same figures.
Both the qualitative and the quantitative agreements between numerical
prediction and experimental data are very good. The prediction agrees well
with experimental data in the location and value of the maximum
magnitude for each vertical profile.

These results demonstrate that the proposed variable Schmidt number model
with the optimized model parameters is indeed appropriate for the simulation
of turbulent scalar mixing in jet-in-crossflows.
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Conclusions

The transport equation of the turbulent scalar flux is analyzed and simplified
under some assumptions. A variable Schmidt number model with three
unknown model parameters is derived. Since the variable Schmidt number
model is nonlinear and the large parameter space is multimodal, calculus-based
and enumerative techniques were deemed inappropriate for either robustness
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Figure 10.
Non-dimensional
temperature distribution
in the symmetric plane
J=72)
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Figure 11.
Species concentration
distribution at the jet
center plane
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Note: Solid line: variable Schmidt number model,;
Dashed line: Sc=0.8; Circle: Experimental data.

or efficiency. A uniform micro-GA is implemented to determine the unknown
parameters. This is the first known application of the GA technique to
turbulence modeling. Overall, the GA technique worked exceptionally well for
this problem in a cost-effective and time-efficient manner.
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Figure 12.
Vertical profiles of

velocity magnitude in
the symmetric plane

Figure 13.

Vertical profiles of mean
scalar concentration in
the symmetric plane
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A set of experimental data of a single round jet issued into a confined crossflow
1s selected for calibration of three model parameters. Three sets of experimental
data of jet-in-crossflows are used for the model validation. Numerical results
show that, compared to the use of a constant Schmidt number, the proposed
variable Schmidt number model gives better predictions for scalar mixing in
jet-in-crossflows. The present work demonstrated the applicability and
usefulness of GA in the development of turbulence models in general.
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